Geotechnische Systeme

SUSPA-Felsanker

Zulassungsnummer
Z-20.1-53

Geltungsdauer
21. Februar 2018 - 23. April 2022
Allgemeine bauaufsichtliche Zulassung

Zulassungsnummer: Z-20.1-53

Antregsteller: DYWiDAG-Systems International GmbH
Destouchesstraße 68
80796 München

Zulassungsgegenstand: SUSPA-Felsanker

Geltungsdauer
vom: 21. Februar 2018
bis: 23. April 2022

ALLGEMEINE BESTIMMUNGEN

1 Mit der allgemeinen bauaufsichtlichen Zulassung ist die Verwendbarkeit bzw. Anwendbarkeit des Zulassungsgegenstandes im Sinne der Landesbauordnungen nachgewiesen.

2 Dieser Bescheid ersetzt nicht die für die Durchführung von Bauvorhaben gesetzlich vorgeschriebenen Genehmigungen, Zustimmungen und Bescheinigungen.

3 Dieser Bescheid wird unbeschadet der Rechte Dritter, insbesondere privater Schutzrechte, erteilt.

6 Dieser Bescheid wird widerruflich erteilt. Die Bestimmungen können nachträglich ergänzt und geändert werden, insbesondere, wenn neue technische Erkenntnisse dies erfordern.

8 Dieser Bescheid beinhaltet zugleich eine allgemeine Bauartgenehmigung. Die von diesem Bescheid umfasste allgemeine Bauartgenehmigung gilt zugleich als allgemeine bauaufsichtliche Zulassung für die Bauart.
II BESONDERE BESTIMMUNGEN

1 Zulassungsgegenstand und Verwendungsbereich

(1) Gegenstand dieser allgemeinen bauaufsichtlichen Zulassung sind die "SUSPA-Felsanker" der Firma DYWIDAG-Systems International GmbH mit Stahlzuggliedern aus Spanndrahtlitzen nach Tabelle 1:

Tabelle 1: Stahlzugglied

<table>
<thead>
<tr>
<th>Typ Spanndrahtlitze</th>
<th>Stahlgüte</th>
<th>Durchmesser</th>
<th>Nennquerschnitt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,6"-Spanndrahtlitzen</td>
<td>St 1570/1770</td>
<td>15,3 mm</td>
<td>140 mm²</td>
</tr>
<tr>
<td></td>
<td>St 1660/1860</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,62"-Spanndrahtlitzen</td>
<td>St 1570/1770</td>
<td>15,7 mm</td>
<td>150 mm²</td>
</tr>
<tr>
<td></td>
<td>St 1660/1860</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2) Es werden folgende Ausführungsvarianten nach Tabelle 2 unterschieden:

Tabelle 2: Ausführungsvarianten

<table>
<thead>
<tr>
<th>Ausführungs-variante</th>
<th>Anzahl Litzen</th>
<th>Korrosionsschutzsystem im Bereich der L_e</th>
<th>Verankerungslänge L_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ G (siehe Anlage 1)</td>
<td>1-22</td>
<td>Kunststoffmantel um jede einzelne Litze und mit Korrosionsschutzmasse werkseitig verfüllt; Gesamtlitzenbündel im Kunststoffglattrohr, welches mit Einpressmörtel im Bohrloch verfüllt wird</td>
<td>Kunststoffwellrohr, mit Einpressmörtel werkseitig oder im Bohrloch verfüllt</td>
</tr>
<tr>
<td>Typ R (siehe Anlage 2)</td>
<td>1-22</td>
<td>Kunststoffmantel um jede einzelne Litze und mit Korrosionsschutzmasse werkseitig verfüllt; Gesamtlitzenbündel im Kunststoffwellrohr, welches mit Einpressmörtel im Bohrloch verfüllt wird</td>
<td>Kunststoffwellrohr, mit Einpressmörtel werkseitig oder im Bohrloch (nur bei fallenden Ankern) verfüllt</td>
</tr>
</tbody>
</table>

(3) Die Verpressanker dürfen als Daueranker bei vorwiegend ruhender Belastung in Gebrauch genommen werden.

Allgemeine baufällische Zulassung
Nr. Z-20.1-53

(5) Für die Anforderungen an die Baugrunduntersuchungen gilt DIN EN 15374, Abschnitt 5.

2 Bestimmungen für das Bauprodukt

2.1 Eigenschaften und Zusammensetzung

2.1.1 Stahlzugglied

(2) Innerhalb eines Stahlzuggliedes (Litzenzügel) dürfen nur Spanndrahtlitzen desselben Nennquerschnitts und desselben Stahlgüte verwendet werden.

(3) Es sind allgemein bauaufsichtlich zugelassene Spanndrahtlitzen mit Korrosionsschutzsystem zu verwenden. Das Korrosionsschutzsystem, bestehend aus Korrosionsschutzmasse und PE-Mantel, wird im Herstellwerk des Spannstahls aufgebracht.

(4) Alternativ dürfen Spanndrahtlitzen verwendet werden, die im Werk des Antragstellers im Bereich des freien Stahlriemens mit PE-Hüllrohr zu versehen sind, wobei der Hüllraum zwischen Lize und Hüllrohr mit dem Korrosionsschutzmittel Nontribos MP-2 auszufüllen ist. Die Menge des eingebrachten Korrosionsschutzmittels, bezogen auf 1 m Länge, soll im Mittel mindestens 42 g/m betragen und darf 25 g/m nicht unterschreiten.

2.1.2 Ankerkopf

(2) Die Ankerbüchse muss für Nachprüfungszwecke und/oder zur Regulierung der Ankerkraft ein Außengewinde aufweisen, über welches die Ankerbüchse als Ganzes angehoben werden kann, ohne die Keile zu lösen. Zusätzlich ist die Ankerbüchse an der nach dem Einbau befindlichen Oberseite durch die Aufschrift "St 1860", bei der Verwendung von Spanndrahtlitzen der Stahlgüte St 1680/1860, zu kennzeichnen. Ankerbüchsen, in denen Spanndrahtlitzen der Stahlgüte St 1570/1770 verankert werden, besitzen keine Aufschrift.

2.1.3 Schutzkappen, Ankerplatte, Stahlübergangsröhren (Ankerstutzen)

(1) Die innere Schutzkappe (Anlage 3 und 4), die auf die Ankerbüchse aufgeschraubt wird und deren Hohlräum mit Vaseline "Cox GX", Nontribos MP-2, UNIGEL 128 F-1 oder mit Vaseline FC 284 TP 70 zu verfüllen ist, muss aus Polyethylen bestehen. Die Abdichtung der inneren Schutzkappe gegen die Ankerplatte ist mit einer Dichtung, bestehend aus einer Densobinde-Wicklung, herzustellen.
Allgemeine bauaufsichtliche Zulassung
Nr. Z-20.1-53

(2) Als zusätzlicher Schutz wird eine äußere Schutzkappe (Anlagen 3 und 4) aus Stahl (S235JR) oder Edelstahl (Werkstoff-Nr. 1.4301, 1.4541 oder 1.4571) mit einer untergelegten Dichtscheibe aus Perbunan auf die Ankerplatte aufgeschraubt. Auf diese äußere Schutzkappe darf verzichtet werden, wenn der Ankerkopf einbetoniert wird.

2.1.4 Kunststoffrohre

(1) Die Umhüllung der freien Stahlänge bzw. der Verankerungslänge erfolgt mit Kunststoffrohren, die aus PVC-U nach DIN EN ISO 1163-1a, aus Polyethylen mit einer Formmasse ISO 17855-PE-HD.E,44-T022 nach DIN EN ISO 17855-1a oder aus Polypropylen mit dem Formmassen ISO 19069-PP-B.E,10-16-003-012-022 nach DIN EN ISO 19069-1a bestehen. Die Rohre dürfen keine Biaseneinschlüsse aufweisen, ihre Pigmentverteilung muss gleichmäßig sein.

(3) Es ist darauf zu achten, dass nur gerade Rohre verwendet werden.

(4) Die Grundabmessungen der Glatt- und Wellenrohre müssen den Angaben der Anlagen 1 bis 4 entsprechen.

(5) Für die alternative Ummantelung der einzelnen Lizenzen der freien Stahlänge L_s im Werk des Anlagenteils, sind Hüllrohre aus Polyethylen o. g. Formmasse $\varnothing 19,2 \times 1,25$ mm (für Lizenzen $\varnothing 15,3$ mm / 0,5", bzw. $\varnothing 19,7 \times 1,25$ mm (für Lizenzen $\varnothing 15,7$ mm / 0,62") zu verwenden.

2.1.5 Korrosionsschutzmaßnahmen

(1) Die Korrosionsschutzmassnahmen kommen im Bereich der freien Stahlänge, des Ankerstutzens (Stahlübergangsrohr) und des Ankerkopfes zum Einsatz

(2) Im Bereich des Ankerstutzens (Stahlübergangsrohr) ist als Korrosionsschutzmasse Nortribos MP-2 oder Vaseline "Cox GX" zu verwenden. Wenn das glatte (Typ G) bzw. das gerippte (Typ R) Kunststoffhüllrohr in der freien Stahlänge L_s mit Einpreßmittel verfüllt wurde und als Korrosionsschutzmasse Nortribos MP-2 verwendet wird, so müssen Kontaktflächen mit Zementstein mit SikaCor-277 versiegelt werden.

DIN EN ISO 1163-1:1999-10
DIN EN ISO 17855-1:2015-02
DIN EN ISO 19069-1:2015-06

(3) Der Hohlraum der inneren PE-Schutzkappe, die auf die Ankerbüchse aufgeschrumpft wird, ist mit Vaseline "Cox GX", Nontribos MP-2, UNIGEL 128 F-1 oder mit Vaseline FC 284 TP 70 zu verfüllen.

(4) Im Bereich der freien Stahllänge ist bei der Anzahl der aufgebrachten PE-Hüllrohren des Hohlraum zwischen Litzen und PE-Hüllrohren mit Nontribos MP-2 auszufüllen.

2.1.6 Korrosionsschutzbeschichtung

(1) Die Ankerplatte ist, falls sie nicht vollständig einbetoniert wird, mit einem Korrosionsschutzsystem gemäß DIN EN ISO 12944-5\(^8\) in Abhängigkeit von der ermittelten Korrosivitätsklasse der Umgebung und mit der Schutzdauer "hoch (H)" zu versehen. Die Oberflächenvorbereitung erfolgt nach DIN EN ISO 12944-4\(^9\). Bei der Ausführung der Beschichtungsarbeiten ist DIN EN ISO 12944-7\(^10\) zu beachten.

(2) Die freiliegenden Flächen des Ankers und der äußeren Stahlschutzkappe sind ebenfalls mit einem dieser Korrosionsschutzsysteme zu versehen. Auf den Korrosionsschutz dieser Teile darf verzichtet werden, wenn sie eine Wanddicke ≥ 6,0 mm aufweisen oder einbetoniert werden.

(3) Alternativ können die Ankerplatte und freiliegende nicht ausreichend durch Beton überdeckung geschützte Flächen von Stahlteilen, z. B. der Ankerscheiben und der Stahlschutzkappe, bei einer Korrosivitätsklasse der Umgebung von C1 bis einschließlich C4, mit einem Korrosionsschutz durch Feuerverzinken gemäß DIN EN 14713-1\(^11\) in Abhängigkeit von der ermittelten Korrosivitätsklasse der Umgebung mit der Schutzdauer "sehr hoch (VH)" versehen werden. Die Oberflächenvorbereitung und Ausführung muss nach DIN EN ISO 1461\(^12\) erfolgen. Die DASi-Richtlinie 022\(^13\) ist zu beachten.

2.1.7 Einpressmörtel

Es ist Einpressmörtel gemäß DIN EN 447\(^14\) zu verwenden. Zusätzlich sind DIN EN 445\(^15\) und DIN EN 446\(^16\) zu beachten.
2.1.8 Verpressmörtel

(1) Als Ausgangsstoffe für den Zementmörtel sind Zemente mit besonderen Eigenschaften nach DIN 1164-1017 und Zemente nach DIN EN 197-118 - unter Berücksichtigung der vorliegenden Expositionsklasse gemäß DIN EN 206-119 in Verbindung mit DIN 1045-220 (Tabellen 1, F.3.1 und F.3.2) - Wasser nach DIN EN 100821 sowie gegebenenfalls Zusatzmittel nach DIN EN 934-222 in Verbindung mit DIN EN 206-1/DIN 1045-2 oder mit allgemeiner bauaufsichtlicher Zulassung und natürlicher Gesteinskörnung für Beton mit höchstens 4 mm Korndurchmesser nach DIN EN 1262023 unter Berücksichtigung von DIN EN 206-1/DIN 1045-2 zu verwenden.

(2) Der Wasser-Zement-Wert muss zwischen 0,35 und 0,7 liegen und soll möglichst niedrig gewählt werden. Der Zementmörtel muss maschinell gemischt werden. Bis zum Verpressen dürfen keine Entmischungen und Klumpenbildungen auftreten. Bei einer alternativen Verwendung von Einpressmörtel ist der Wasser-Zement-Wert gemäß DIN EN 447 auf maximal 0,44 zu begrenzen.

2.1.9 Weitere Komponenten

(1) Abstandhalter müssen den Angaben der Anlage 1 bzw. Anlage 2 und den beim Deutschen Institut für Bautechnik hinterlegten Angaben entsprechen. Im Bereich der Verankerungsänge l_{ab} sind die Litzen durch Stahlbander zu bündeln und alle 80 cm mit Distanzhaltern zu spreizen. Die Litzenbündel sind mit einer durchgehenden PE-Rundschur (mindestens $\square 5$ mm bei Ankern aus 1 bis 12 Litzen bzw. mindestens $\square 7$ mm bei Ankern aus 13 bis 22 Litzen) mit einer Ganghohe von 0,25 m zu zentrieren, so dass zwischen Gesamtlaugenbündel und Wellrohr ein Abstand ≥ 5 mm gewährleistet ist.

(2) Als Schrumpfschläuche sind Korrosionsschutzschrumpfschläuche (CPSM oder SATM) oder Fixschrumpfschläuche (CFM, MSTM, MWTM oder MOK) zu verwenden. Diese bestehen aus Polyethylen, die Dichtungskleberscheibe in dem Schrumpfschlauch muss ein Heißschmelzkleber sein. Die Schrumpfschläuche sind mit Heißluft, Infrarotbestrahlung oder der weichen Flamme eines Gasbrenners aufzuschrumpfen, die Wanddicke muss im geschrumpften Zustand $\geq 1,5$ mm betragen.
2.2 Herstellung, Lagerung, Transport und Kennzeichnung

2.2.1 Herstellung der für den Einbau und das Verpressen vorgeformten Ankerkonstruktion

2.2.1.1 Allgemeines

(1) Der Spannstahl ist vor dem Einbau gemäß den Zulassungsbestimmungen des Spannstahls zu behandeln. Der Spannstahl muss frei von schädigendem Rost und sauber sein.

(3) Der Korrosionsschutz und die Herstellung müssen gemäß der beim Deutschen Institut für Bautechnik hinterlegten Arbeitsanweisung erfolgen.

2.2.1.2 Vorgeformte Ankerkonstruktion

(1) Im Bereich der freien Stahlänge ist das Litzenbündel von einem Kunststoffrohr umgeben. Die einzelne Litze ist mit einem PE-Mantel oder einem PE-Einziehhüllrohr und plastischer Korrosionsschutzmasse zu versehen (vgl. Anlagen 1 bis 4). Dabei sind alternativ folgende Verfahren anzuwenden:

 - Es sind allgemein bauaufsichtlich zugelassene Spannstahllitzen mit im Herstellwerk des Spannstahls aufgebrachtem Korrosionsschutzsystem, bestehend aus Korrosionsschutzmasse und PE-Mantel, gemäß Abschnitt 2.1.1 zu verwenden.

 - Die Litzen werden im Werk des Antragstellers im Bereich der freien Stahlänge durch PE-Hüllrohre umgeben, wobei der Hohlraum zwischen Litze und Hüllrohr mit dem Korrosionsschutzmittel Nontribos MP-2 auszufüllen ist.

(2) Im Bereich der geplanten Verankerungsstelle ist bei Verwendung allgemein bauaufsichtlich zugelassener Spannstahllitzen mit Korrosionsschutzsystem die vom Stahlwerk extrudierte PE-Ummantelung der Litzen zu entfernen; das Korrosionsschutzmittel ist mit Wasser bei ca. 90 °C und 70 bis 80 bar abzuwaschen.

(3) Beim Anker Typ G sind die Litzen innerhalb der vorgesehenen Verankerungsstelle und beim Typ R über die gesamte Ankerlänge in einem gerippten Kunststoffhüllrohr zu führen, das eine gleichmäßige Wanddicke ≥ 1 mm aufweisen muss. Die Durchmesser der Hüllrohre richten sich nach der Anzahl der Litzen im Zugglied (s. Anlagen 1 und 2). Das Hüllrohr ist fallsseitig durch eine PE-Endkappe mit einer Wanddicke ≥ 1 mm zu versenken, die mit einem Korrosionsschutzschirmschlauch (GPSM oder SATM) mit dem Hüllrohr verbunden wird. Die Überlappung auf dem Hüllrohr muss mindestens 85 mm betragen. Der Schirmschlauch überlappt die Endkappe und das Hüllrohr um jeweils die gleiche Länge.

(4) Beim Anker Typ G ist das Litzenbündel im Bereich der freien Stahlänge L_{f} in einem glatten Kunststoffhüllrohr mit einer Mindestwanddicke ≥ 3 mm zu führen. Die Durchmesser der Hüllrohre richten sich nach der Anzahl der Litzen im Hüllrohr (Anlage 3).

(5) Beim Anker Typ G ist zur Verbindung des gerippten und des glatten Hüllrohrs am Übergang von der Verankerungsstelle zur freien Stahlänge eine Stahlmuffe anzuordnen, auf die beide Hüllrohre zu jeweils 1/3 der Stahlmuffenlänge aufgeschoben werden (Anlage 1). Die Überlänge der beiden Hüllrohre auf die Stahlmuffe sind mit einem gemeinsamen nalgärigen Korrosionsschutzschirmschlauch (GPSM oder SATM) von mindestens 300 mm Lange abzudecken.

(6) Der Hohlraum im Bereich der Verankerungsstelle zwischen dem gerippten Kunststoffhüllrohr und dem Stahlzugglied ist entweder werksmäßig oder im Bohrloch mit Einpressmörtel zu verfüllen. In beiden Fällen ist der Einpressmörtel mit einer Einpressgeschwindigkeit von höchstens 5 m/min einzufüllen.
(7) Im Fall der werkmassigen Verfuellung sind die Anker im Bereich der Verankerungslange hierfur schrag zu lagern und mit Einpressmortel von der unten liegenden Endkappe aus nach oben zu verpressen. Beim Anker Typ G (Anlage 1) und Anker Typ R (Anlage 2) ist solange zu verpressen, bis der Einpressmortel aus einer im Glattrohr (bei Anker Typ G) bzw. Ripprohr (bei Anker Typ R) angeordneten Entluftungsoeffnung austritt. Diese Entluftungs-oeffnung ist so anzubringen, dass sich die Enden der PE-Mantel der Monolitzen noch rd. 300 mm im Bereich der Verankerungslange befinden.

(8) Fur den Fall der Verfuellung im Bohrloch ist bereits werkmassig eine innere Verfuellungseinbauen.

Bei einem Anker Typ G, der nach oben genaigt eingebaut werden soll, ist außerdem werkmassig noch eine innere Entluftungseinleitung und ein Zementstein- oder Bitumenpropfen innerhalb der Stahlmuffe einzubauen (Anlage 1).

2.2.1.3 Konstruktion und Korrosionsschutz des Ankerkopfes

(1) Die Konstruktion des Ankerkopfes ist auf den Anlagen 3 und 4 dargestellt. Die Montage des Ankerkopfes auf der Baustelle muss entsprechend der beim Deutschen Institut für Bautechnik hinterlegten Arbeitsanweisungen erfolgen. Im Werk sind die folgenden Vorfertigungsmaßnahmen der Ankerkopfkonstruktion vorzunehmen:

Im Bereich zwischen Ankerplatte und dem oberen Ende des Hüllrohres ist ein Stahlrohr (Ankerstutzen) anzuordnen, das mit der Ankerplatte zu verschweißen ist. Die Schweißarbeiten zur Abdichtung des Rohrstutzens zur Ankerplatte sind werkmassig auszuführen. Firmen, die Schweißarbeiten an den Ankerplatten ausführen, müssen über ein Schweißzertifikat für die Ausführungsklasse EXC 1 nach DIN EN 1090-1 verfügen.

Für einen Anker Typ G ist nach den vorgenannten Arbeiten die Lippenabdichtung mit einem wasserundurchlässigen Kontaktleckstoff in das erdige Ende des Ankerstutzens einzulegen.

Wenn die äußere Stahlschutzkappe aus nichtrostendem Stahl gemäß der allgemeinen bauaufsichtlichen Zulassung für "Erzeugnisse, Verbindungsmittel und Bauteile aus nichtrostenden Stählen", Zulassungsnummer Z-30.3-6, mit den Werkstoffnummern 1.4301, 1.4541 oder 1.4571 (s. auch Anlage 5) besteht, muss sie nicht mit einem Korrosionsschutzsystem versehen werden. Die Stähle sind in der Zulassung Nr. Z-30.3-6 hinsichtlich der Korrosion den Widerstandsklassen II (Werkstoffnummern 1.4301 und 1.4541) bzw. III (Werkstoffnummer 1.4571) zugeordnet. Die dort in den Tabellen 1 und 1.1 sowie Abschnitt 2.1.6 getroffenen Festlegungen sind zu beachten.

2.2.2 Transport und Lagerung

(2) Die Anker dürfen temperaturabhängig frühestens einen Tag nach dem Verpressen mit Einpressmortel im Werk von der Montagebank genommen werden.

DIN EN 1090-1:2012-02
(3) Der weitere Transport und der Einbau dürfen erst 3 Tage nach dem Verpressen mit Einpressmörtel im Werk durchgeführt werden. Der Einbau des Ankers zu einem Zeitpunkt, wo der Einpressmörtel noch nicht vollständig erhartet ist, ist erlaubt.

(4) Die Anker sind bodenfrei zu lagern, Verschmutzungen und Verunreinigungen insbesondere der Wollrohre sind zu vermeiden. Werden die Anker nur in Abständen unterstützt, so dürfen die Auflagerungspunkte nicht schadhäfig, sondern müssen flächig sein.

(5) Werden Anker gestapelt, so müssen sie parallel aufeinander liegen. Werden sie in Abständen durch Kanthölzer oder entsprechend geeignete Abstandhalter unterstützt, so darf das Gewicht der darüber liegenden Anker nur über die Hölzer oder die Abstandhalter abgetragen werden.

(6) Die Anker dürfen nicht geworfen oder fallengelassen werden. Sie sind so zu transportieren (z. B. von Hand auf Schultern oder mit Tragebändern), dass insbesondere keine Beschädigungen der Kunststoffhülle auftreten können.

(7) Bei Kranhakentransport ist der Anker an seinem spannseitigen Ende oder mit Tragbändern zu fassen oder in Rinnen zu legen.

(8) Die Anker dürfen auf Trommeln aufgewickelt transportiert werden und von der Trommel aus in das Bohrloch eingebaut werden, wobei die durchwegs verpresse Verankerungslänge hierbei tangential von der Trommel ablaufen. Die beim Deutschen Institut für Bautechnik hinterlegten Arbeitsanweisungen sind zu beachten.

(9) Beim Einbau und Transport der Anker dürfen folgende Krümmungsradien R nicht unterschritten werden:

\[
\begin{align*}
\text{min } R &= 0,90 \text{ m} & (\text{Daueranker aus 1 bis 9 Litzen}), \\
\text{min } R &= 1,00 \text{ m} & (\text{Daueranker aus 10 bis 12 Litzen}), \\
\text{min } R &= 1,25 \text{ m} & (\text{Daueranker aus 13 bis 22 Litzen})
\end{align*}
\]

2.2.3 Kennzeichnung

(1) Der Lieferschein der vorgefertigten Ankerkonstruktion muss vom Hersteller mit dem Übereinstimmungszeichen (U-Zeichen) nach den Übereinstimmungszeichen-Verordnungen der Länder gekennzeichnet werden. Die Kennzeichnung darf nur erfolgen, wenn die Voraussetzungen nach Abschnitt 2.3 erfüllt sind.

(2) Aus dem Lieferschein muss mindestens hervorgehen, für welche Verpressanker die Teile (z. B. Ankerplatte in Abhängigkeit von der gewählten Zwischenkonstruktion) bestimmt sind und von welchem Werk sie hergestellt wurden. Aus dem Lieferschein muss die eindeutige Zuordnung der Teile zum Verpressankertyp hervorgehen.

2.3 Übereinstimmungsbestätigung

2.3.1 Allgemeines

(2) Für die Erteilung des Übereinstimmungszertifikats und die Fremdüberwachung einschließlich der dabei durchzuführenden Produktprüfungen hat der Hersteller der Ankerkomponenten und der vorgefertigten Ankerkonstruktion eine hierfür anerkannte Zertifizierungsstelle sowie eine hierfür anerkannte Überwachungsstelle einzuschalten.

(3) Die Übereinstimmungserklärung hat der Hersteller durch Kennzeichnung der Bauprodukte mit dem Übereinstimmungszeichen (U-Zeichen) unter Hinweis auf den Verwendungszweck abzugeben.
(4) Dem Deutschen Institut für Bautechnik ist von der Zertifizierungsstelle eine Kopie des von ihr erteilten Übereinstimmungszertifikats zur Kenntnis zu geben.

(5) Dem Deutschen Institut für Bautechnik ist zusätzlich eine Kopie des Erstprüferichts zur Kenntnis zu geben.

2.3.2 Werkseigene Produktionskontrolle

(1) In jedem Herstellwerk ist eine werkseigene Produktionskontrolle einzurichten und durchzuführen. Unter werkseigener Produktionskontrolle wird die vom Hersteller vorzunehmende kontinuierliche Überwachung der Produktion verstanden, mit der dieser sicherstellt, dass die von ihm hergestellten Bauprodukte den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung entsprechen.

(2) Die werkseigene Produktionskontrolle muss mindestens die in Anlage 6 aufgeführten Maßnahmen hinsichtlich der Wareneingangskontrolle und der Kontrolle während der Herstellung einschließen.

(3) Die Ergebnisse der werkseigenen Produktionskontrolle sind aufzuzeichnen und auszuwerten. Die Aufzeichnungen müssen mindestens die folgenden Angaben enthalten:
 - Bezeichnung des Bauprodukts bzw. des Ausgangsmaterials und der Bestandteile,
 - Art der Kontrolle oder Prüfung,
 - Datum der Herstellung und der Prüfung des Bauprodukts bzw. des Ausgangsmaterials oder der Bestandteile,
 - Ergebnis der Kontrollen und Prüfungen und, soweit zutreffend, Vergleich mit den Anforderungen,
 - Unterschrift des für die werkseigene Produktionskontrolle Verantwortlichen.

(4) Die Aufzeichnungen sind mindestens fünf Jahre aufzubewahren und der für die Fremdüberwachung eingeschalteten Überwachungsstelle vorzulegen. Sie sind dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

2.3.3 Fremdüberwachung

(1) In jedem Herstellwerk ist das Werk und die werkseigene Produktionskontrolle durch eine Fremdüberwachung regelmäßig zu überprüfen, mindestens jedoch zweimal jährlich.

(2) Im Rahmen der Fremdüberwachung ist eine Erstprüfung nach Anlage 6 durchzuführen. Es sind auch Proben für Stichprobenprüfungen zu entnehmen und die Prüfwerkzeuge zu kontrollieren. Die Probenahmen und die Prüfungen obliegen jeweils der anerkannten Überwachungsstelle.

3 Bestimmungen für die Anwendung des Zulassungsgegenstandes

3.1 Planung und Bemessung

(2) Für die Verankerung ist die Ankerplatte und auch die Stahl- bzw. Stahlbetonkonstruktion, auf der die Ankerplatte aufliegt, gesondert nach den geltenden technischen Bau-
bestimmungen nachzuweisen. Diese sind nicht Gegenstand dieser allgemeinen
baaufsichtlichen Zulassung.

(3) Erfolgt die Verankerung mit einer einbetonierten Ankerplatte, kann bei Verwendung von
Sparndrahltitlizen der Stahlguße St 1570/1770 die allgemeine bauaufsichtliche Zulassung
"SUSPA-Litzenspannverfahren 140 mm²" (Nr. Z-13.1-21) bzw.
"SUSPA-Litzenspannverfahren 150 mm²" (Nr. Z-13.1-82) angewendet werden.
Die dort angegebene Zusatzbewehrung ist zu berücksichtigen. Es ist nachzuweisen,
dass die zulässigen
Vorspannkraften \(P_{n0,\text{max}} \) gemäß Abschnitt 3.2 der allgemeinen bauaufsichtlichen Zulassung
überschritten werden.

(4) Die Weiterleitung der Kräfte im Bauwerk (z. B. Spaltzugkräfte) ist in jedem Einzelfall
nachzuweisen.

(5) Es ist nachzuweisen, dass die Änderung der Kraft (charakteristischer Wert) im Stahlzug-
glied aus häufig sich wiederholender Verkehrslast (auch Wind) nicht größer als 20 % der
charakteristischen Beanspruchung \(E_x \) ist.

(6) Die Gesamtsicherheit des verankerten Gebirgskörpers ist Gegenstand der
felsmechanischen Standsicherheitsnachweise; die für die Standsicherheit erforderlichen
Ankerkräfte sind vom Sachverständigen gemäß Abschnitt 3.2 der allgemeinen
Zusatzbewehrung ist zu berücksichtigen. Es ist nachzuweisen, dass die
zulässigen
Vorspannkraften \(P_{n0,\text{max}} \) nicht überschritten werden.

3.2 Ausführung

3.2.1 Allgemeines

(1) Für die Ausführung (Herstellung in-Situ) und Prüfung sind die Festlegungen in
DIN EN 1537 in Verbindung mit DIN SPEC 18537 und DIN EN 1997-1
in Verbindung mit
DIN EN 1997-1/NA und DIN 1054 zu beachten, soweit nachstehend nichts Abweichendes
gesagt ist.

(2) Der Zusammenbau und der Einbau der Verpressanker dürfen nur unter verantwortlicher
technischer Leitung des Antragstellers erfolgen.

(3) Es ist gemäß den Arbeitsanweisungen zu arbeiten, die beim Deutschen Institut für
Bautechnik hinterlegt wurden. Die Arbeitsanweisungen bezüglich der Ankerherstellung auf
er der Baustelle und der Ankerkopfmontage müssen auf der Baustelle vorliegen. Sie sind der
Überwachungsstelle (Abschnitt 3.2.7) zur Verfügung zu stellen, diese gilt auch für die
Konstruktionszeichnungen des Ankerkopfes.

(4) Über die mit Dauerrankern gesicherten Bauten ist vom Antragsteller eine Liste zu führen,
aus der das verankerte Bauwerk, der Ankertyp (Bauart) und die Anzahl der Anker
hervorgehen.
3.2.2 Herstellen der Bohrlöcher

3.2.2.1 Bohrlochdurchmesser

3.2.2.2 Bohrlöcher im Fels

(1) Das Bohrverfahren ist auf die spezifischen Felseigenschaften abzustimmen.

(2) Es ist nachzuweisen, dass im Bereich der freien Ankerlänge senkrecht zur Bohrlochachse

- keine Klufverschiebungen erwartet werden, wenn der Ringraum zwischen Bohrlochwand und Hüllrohr mit Zementmortel verfüllt ist (z.B. wenn keine Begrenzung der Krafttragungslänge nach Abschnitt 3.2.4.2 durchgeführt wird) bzw.

- zu erwartende Klufverschiebungen kleiner sind als die Differenz zwischen Hüllrohr und Bohrlochdurchmesser, wenn der Ringraum zwischen Bohrlochwand und Hüllrohr nicht mit Zementmortel verfüllt ist (z.B. wenn die Begrenzung der Krafttragungslänge nach Abschnitt 3.2.4.2 durchgeführt wurde).

(3) Ein Prüfen der Durchgängigkeit der Bohrlöcher z. B. mit Hilfe einer Schablone wird empfohlen.

3.2.3 Einbau in das Bohrloch

(1) Im Bereich der Verankerungslänge sind Abstandhalter entsprechend den Anlagen 1 und 2 anzuordnen.

(2) Wenn bei verrohrter Bohrung das herausragende Ende der Bohrgarnitur ein kantiges Innengewinde bzw. ein scharfkantiges Röhrende besitzt, dürfen die nach Abschnitt 2.2.1 vorbereiteten Anker erst dann in das Bohrloch eingeführt werden, wenn auf das herausragende Ende der Bohrgarnitur eine kantenfreie Einführungstrompete oder ein Röhrende aufgesetzt worden ist, die das Innengewinde der Verrohrung völlig abdecken. Beim Einführen des Ankers ist darauf zu achten, dass der Korrosionsschutz nicht beschädigt wird.

3.2.4 Herstellen des Verpressankers

3.2.4.1 Herstellen des Verpresskörpers

3.2.4.1.1 Allgemeines und Herstellung des Verpresskörpers

(1) Bei verrohrter Bohrung sind nach dem Füllen des Bohrlochs mit Verpressmörtel und Einbau des Ankers sowie ggf. nach Aufsetzen der Verpresskappe, die Rohre langsam und schrittweise unter Aufrechterhaltung des erforderlichen Verpressdrucks zu ziehen. Es muss mindestens bis zum Übergang der Verankerungslänge des Zuggliedes \(L_{f} \) zur freien Stahlänge \(L_{f} \) verpresst werden.

(2) Die Injektion zur Herstellung des Verpresskörpers muss immer vom tiefstegelegenen, eine ggf. erforderliche Entlüftung am höchstegelegenen Punkt des Verpresskörpers erfolgen. Bei steigenden Ankern ist vor Beginn der Verpressarbeiten ein am Übergang von der Verankerungslänge des Zuggliedes \(L_{f} \) zur freien Stahlänge \(L_{f} \) außen am Hüllrohr befestigter Packer zu aktivieren.

3.2.4.1.2 Herstellen des Verpresskörpers im Fels

(1) Der Fels muss so dicht sein, dass eine einwandfreie Herstellung des Verpresskörpers sichergestellt ist. Dies ist durch besondere Untersuchungen (z. B. optische Bohrloch-Inspektion, Pegelstandmessung des Mortelspiegels, Wasseraufpressversuch) im erforderlichen Umfang zu überprüfen.

3.2.4.2 Begrenzung der Krafttragungs­länge

(1) Die Krafttragungslänge ist i. A. durch folgende Verfahren zu begrenzen:

a) durch Ausspülen überschüssigen Verpressmörtels (z. B. mit Wasser oder Bentonit-Suspension) mit Hilfe eines auf dem Hüllohr festmontierten Spülschlauches. Der Spülschlauch ist so anzulegen, dass die ersten seitlichen Austrittsoffnungen 50 cm oberhalb des Überganges zwischen freier Stahlspannung und Verankerungslänge des Zugglieds liegen. Die Überprüfung dieses Wertes ist im Protokoll zu bestätigen. Der Spüldruck muss ca. 4 bar betragen.

b) durch Ausspülen überschüssigen Verpressmörtels mit Hilfe einer Spüllanze. Die nach unten verschlossene und mit seitlichen Öffnungen versehene Spüllanze ist bis ca. 1,0 m oberhalb des Übergangs Lk/Lt einzuführen. Der Spüldruck muss ca. 4 bar betragen.

c) durch Absperrung der Krafttragungslänge mit einem Packers. Die Eignung des Packers ist im Rahmen der Eignungsprüfung nachzuweisen.

(2) Bei nach unten geneigten (fallenden) Verpressankernt darf Verfahren a), b) oder c) angewendet werden. Bei nach oben geneigten (steigenden) Verpressankern ist das Verfahren c) anzuwenden.

(3) Auf die Begrenzung der Krafttragungslänge darf verzichtet werden, wenn die hierfür in DIN EN 1537 in Verbindung mit DIN SPEC 18537, Abschnitt 8.3.6, genannten Bedingungen erfüllt sind.

3.2.4.3 Nachverpressungen

(1) Nachverpressungen mit Zementsuspension dürfen entsprechend DIN EN 1537 in Verbindung mit DIN SPEC 18537, Abschnitt 8.3.6, durchgeführt werden.

(2) Anschließend ist, sofern die Krafttragungslänge begrenzt sein muss, die freie Ankerlänge z.B. mit Wasser oder Bentonitsuspension freizuspülen.

3.2.5 Korrosionsschutzmaßnahmen auf der Baustelle

(1) Die einzelnen Schritte der Montage des Ankerkopfes auf der Baustelle einschließlich der Korrosionsschutzmaßnahmen müssen gemäß der beim Deutschen Institut für Bautechnik hinterlegten Arbeitsanweisung erfolgen.

(4) Wenn das Innere der mittels Zementmörtel verfüllt wird und das weitere Kunststoffhüllrohr mit Zementmörtel verfüllt wird, so ist die Betonmörteloberfläche mit SikaCor-277 zu versiegeln. Die Umrandung der Litzen wird zu entfernen, wobei ein Mindestabstand von 5 cm zu einer vorhandenen Zementsteinoberfläche im Stahlrohr einzuhalten ist.

(5) Nach dem Spannen des Ankerrings sind die Ankerbäuche und der Spannstahl überbrückt mit inneren PE-Schutzkappen zu schützen, die auf die Ankerbäuche aufgeschnitten und der Hohlräum mit Vaseline "Cox GX". Nontrubs MP-2, UNIGEL 128 F-1 oder mit Vaseline FC 284 TP 70 zu verfüllen. Die Abdichtung der inneren Schutzkappe gegen die Ankerplatte ist mit einer Dichtung, bestehend aus einer Dichtung, herzustellen.

(6) Als zusätzlicher Schutz wird die äußere Schutzkappe aus Stahl mit einer untergelegten Dichtscheibe aus Perspex auf die Ankerplatte aufgeschnitten. Die äußere Schutzkappe darf verzyklisiert werden, wenn der Ankerkopf einbetoniert wird.

(7) Müssen Anker nachgespannt werden, ist darauf zu achten, dass der Korrosionsschutz nach dem Nachspannen wieder einwandfrei ausgeführt wird, z. B. durch Nachverfüllen von Vaseline "Cox GX".

3.2.6 Spannvorgang

(1) Nach ausreichender Erhärzung des Verpresskörpers können die Anker gespannt werden. Dazu wird eine Hohlkollenpresse auf den Litzenüberstand geschoben. Diese Spannpresse sitzt auf der Ankerbüche des Ankerkopfes auf.

(2) Das Zugglied ist in jeder Richtung senkrecht zu seiner Achse zu verankern.

(3) Um sicherzustellen, dass der Ankerkopf rechtwinklig zum Stahlzugglied liegt, sind Winkelabweichungen auszugleichen (z. B. Rohrkeile, Mörtelbett o. A.).

(4) Die Klemmen betten sich beim Verankern im Ankerkopf um 6 mm ein; der Einfluss dieser Einbettung ist bei Ermittlung der Ausziehwege als Schluß zu berücksichtigen. Bei freien Stahlängen ≤ 5 m ist dieser Schluß dadurch auszugleichen, dass die Ankerbüche nach dem Einbetten der Klemmen von der Ankerplatte abgebohrt wird und anschließend zwischen Ankerbüche und Ankerplatte Unterlegscheiben mit einer Gesamthöhe von 5 mm eingefügt werden.

(5) Wenn nach dem Festlegen der Ankere und dem Abbau der Spannpresse keine genaueren Angaben hinsichtlich des Litzenüberstandes vorliegen, werden die Litzen ca. 20-50 mm außerhalb der Ankerbüche abgetrennt.

3.2.7 Eignungs- und Abnahmeprüfungen und Übersicht der Ausführung

(1) Eignungs- und Abnahmeprüfungen sind auf jeder Baustelle entsprechend DIN EN 1537 in Verbindung mit DIN SPEC 18537 durchzuführen.

Im Rahmen der Überwachungstätigkeit bei den Eignungs- und Abnahmeprüfungen muss die eingeschaltete Überwachungsstelle den Zusammenbau der Daueranker auf der Baustelle, insbesondere die auf der Baustelle vorzunehmenden Korrosionsschutzmaßnahmen, z.B. die vollständige Verfüllung des Ankerkopfbereiches mit Korrosionsschutzmasse, zumindest stichprobenweise, überwachen.

Wenn der gesamte Hohlraum zwischen Litzenbündel und Wellrohr erst im Bohrloch mit Einpressmörtel verfüllt wird, ist die grundsätzliche Funktionsweise durch die Überwachungsstelle zu kontrollieren, außerdem ist die sorgfältige Ausführung stichprobenweise zu überwachen. Im Prüfbericht ist dies jeweils zu vermerken.

Die Überwachungsstelle muss der zuständigen Bauaufsichtsbehörde Meldung erstatten, wenn Einrichtungen und Personal auf der Baustelle keine Gewähr für den ordnungsgemäßen Einbau bieten. Der Beginn dieser Arbeiten ist der zuständigen Bauaufsichtsbehörde anzuzeigen.

Übereinstimmungserklärung der Ausführung

Von der ausführenden Firma ist eine Erklärung abzugeben, dass die von ihr hergestellten Verpressanker den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung entsprechen.

3.3 Nutzung, Unterhalt, Wartung

3.3.1 Nachprüfung

(1) Es gilt DIN EN 1537 in Verbindung mit DIN SPEC 18537, Abschnitt 9.11.

(2) Die Nachprüfung soll erforderlichenfalls von der Überwachungsstelle übernommen werden, die bereits mit den Eignungsprüfungen befasst war.

Bettina Hemme
Referatsleiterin
Übersicht Daueranker
Typ R 6-1 bis R 6-22
Ankerkopf und Kunststoff-Hüllrohr der freien Ankerlänge

Bei den Typen 6-15 bis 6-22 hat der Ankerstutzen ein Reduziersstück (Stahl) für die Lippenwicklung.

<table>
<thead>
<tr>
<th>Anker Typ</th>
<th>Litzen Anzahl</th>
<th>äußere Schutzkappe (Stahl)</th>
<th>innere Schutzkappe (PE-HD)</th>
<th>Ankerstutzen</th>
<th>Kunststoffhüllrohr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ø V</td>
<td>Ø H</td>
<td>M</td>
<td>Ø J</td>
<td>Ø Q</td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>6-1</td>
<td>1</td>
<td>140</td>
<td>89</td>
<td>110</td>
<td>64</td>
</tr>
<tr>
<td>6-2</td>
<td>2</td>
<td>178</td>
<td>133</td>
<td>110</td>
<td>98</td>
</tr>
<tr>
<td>6-3</td>
<td>3</td>
<td>173</td>
<td>133</td>
<td>110</td>
<td>103</td>
</tr>
<tr>
<td>6-4</td>
<td>4</td>
<td>219</td>
<td>178</td>
<td>125</td>
<td>122</td>
</tr>
<tr>
<td>6-5</td>
<td>5</td>
<td>219</td>
<td>178</td>
<td>125</td>
<td>144</td>
</tr>
<tr>
<td>6-7</td>
<td>6-7</td>
<td>220</td>
<td>178</td>
<td>125</td>
<td>144</td>
</tr>
<tr>
<td>6-9</td>
<td>8-9</td>
<td>267</td>
<td>216</td>
<td>140</td>
<td>182</td>
</tr>
<tr>
<td>6-12</td>
<td>10-12</td>
<td>267</td>
<td>216</td>
<td>140</td>
<td>209</td>
</tr>
<tr>
<td>6-15</td>
<td>13-15</td>
<td>305</td>
<td>254</td>
<td>160</td>
<td>219</td>
</tr>
<tr>
<td>6-19</td>
<td>16-19</td>
<td>305</td>
<td>254</td>
<td>160</td>
<td>239</td>
</tr>
<tr>
<td>6-22</td>
<td>20-22</td>
<td>324</td>
<td>273</td>
<td>170</td>
<td>160</td>
</tr>
</tbody>
</table>

SUSPA-Felsanker

Ankerkopfausbildung
Typ G 6-1 bis G 6-22

Anlage 3
Anker Typ R: mit durchgehend geripptem Hüllrohr
Ankerkopf und Kunststoff-Hüllrohr der freien Ankerlänge

<table>
<thead>
<tr>
<th>Anker</th>
<th>Litzen</th>
<th>äußere Schutzkappe (Stahl)</th>
<th>innere Schutzkappe (PE-HD)</th>
<th>Ankerstutzen</th>
<th>Kunststoff- hüllrohr</th>
<th>Roll- ring</th>
<th>Anlage 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1</td>
<td>1</td>
<td>140</td>
<td>64</td>
<td>51,0</td>
<td>64,3</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>6-2</td>
<td>2</td>
<td>178</td>
<td>98</td>
<td>82,5</td>
<td>93,5</td>
<td>9</td>
<td>63</td>
</tr>
<tr>
<td>6-3</td>
<td>3</td>
<td>178</td>
<td>103</td>
<td>82,5</td>
<td>93,5</td>
<td>10</td>
<td>63</td>
</tr>
<tr>
<td>6-4</td>
<td>4</td>
<td>219</td>
<td>122</td>
<td>101,5</td>
<td>106,3</td>
<td>11</td>
<td>75</td>
</tr>
<tr>
<td>6-5</td>
<td>5</td>
<td>219</td>
<td>144</td>
<td>101,5</td>
<td>106,3</td>
<td>12</td>
<td>75</td>
</tr>
<tr>
<td>6-7</td>
<td>6-7</td>
<td>229</td>
<td>144</td>
<td>114,3</td>
<td>106,3</td>
<td>13</td>
<td>90</td>
</tr>
<tr>
<td>6-9</td>
<td>8-9</td>
<td>257</td>
<td>163</td>
<td>114,3</td>
<td>106,3</td>
<td>14</td>
<td>90</td>
</tr>
<tr>
<td>6-12</td>
<td>10-12</td>
<td>287</td>
<td>182</td>
<td>139,7</td>
<td>128,5</td>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>6-15</td>
<td>13-15</td>
<td>305</td>
<td>209</td>
<td>159,0</td>
<td>149,0</td>
<td>16</td>
<td>110</td>
</tr>
<tr>
<td>6-19</td>
<td>16-19</td>
<td>305</td>
<td>219</td>
<td>191,0</td>
<td>178,4</td>
<td>17</td>
<td>125</td>
</tr>
<tr>
<td>6-22</td>
<td>20-22</td>
<td>324</td>
<td>239</td>
<td>191,0</td>
<td>178,4</td>
<td>18</td>
<td>125</td>
</tr>
</tbody>
</table>
Ankerplatte einbetoniert

<table>
<thead>
<tr>
<th>Anker Typ</th>
<th>Lützen Anzahl</th>
<th>Ankerbüche</th>
<th>Ø6</th>
<th>Ankerplatte min ØA</th>
<th>Beton ≥ C20/25 Ankerplatte min C</th>
<th>Beton ≥ C30/37 Ankerplatte min C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>6-1</td>
<td>1</td>
<td>56x3</td>
<td>50</td>
<td>20</td>
<td>80</td>
<td>15</td>
</tr>
<tr>
<td>6-2</td>
<td>2</td>
<td>90x6</td>
<td>50</td>
<td>52</td>
<td>130</td>
<td>20</td>
</tr>
<tr>
<td>6-3</td>
<td>3</td>
<td>95x5</td>
<td>50</td>
<td>58</td>
<td>150</td>
<td>25</td>
</tr>
<tr>
<td>6-4</td>
<td>4</td>
<td>110x6</td>
<td>55</td>
<td>72</td>
<td>170</td>
<td>25</td>
</tr>
<tr>
<td>6-6</td>
<td>6</td>
<td>135x6</td>
<td>60</td>
<td>86</td>
<td>200</td>
<td>30</td>
</tr>
<tr>
<td>6-7</td>
<td>7</td>
<td>135x6</td>
<td>60</td>
<td>86</td>
<td>220</td>
<td>35</td>
</tr>
<tr>
<td>6-9</td>
<td>8</td>
<td>155x6</td>
<td>65</td>
<td>112</td>
<td>260</td>
<td>40</td>
</tr>
<tr>
<td>6-12</td>
<td>10-12</td>
<td>170x6</td>
<td>75</td>
<td>120</td>
<td>250</td>
<td>45</td>
</tr>
</tbody>
</table>

1) Abmessungen der Ankerplatten gemäß Tabelle gelten nur für Verankerungen von Spannstahlützen der Stahlgieß St 1570/1770, die gemäß "SUSPA-Lützenspannverfahren 140mm²" (Z-13.1-21) bzw. "SUSPA-Lützenspannverfahren 150mm²" (Z-13.1-82) ausgeführt werden.

Ankerplatte mit Auflagerung auf Beton oder Stahlübergangskonstruktion*

* Die Bemessung der Ankerplatte und Stahlübergangskonstruktion erfolgt durch Nachweis.

SUSPA-Felsanker

Auflagerung des Ankernopfes

Typ 6-1 bis 6-22

Anlage 5
<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfmethode</th>
<th>WPK</th>
<th>EP/ FÜ</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Spannstahl</td>
<td>Lieferschein</td>
<td>jede Lieferung</td>
<td>X</td>
<td>Ü-Zeichen nach allgemeiner baufachlicher Zulassung</td>
</tr>
<tr>
<td>Ankerbüchse</td>
<td>Messung</td>
<td>jede Lieferung</td>
<td>Werkszeichnungen</td>
<td></td>
</tr>
<tr>
<td>Nenndurchmesser und Gewindetiefen</td>
<td>Messung</td>
<td>jede Lieferung</td>
<td>Werkszeichnungen</td>
<td></td>
</tr>
<tr>
<td>1.4 Kunststoffrohre (Glattrohre, Wellrohre), Einpresskappe</td>
<td>DIN EN 10204</td>
<td>jede Lieferung</td>
<td>X</td>
<td>Werksbescheinigung 2.1</td>
</tr>
<tr>
<td>Formmasse</td>
<td>Messung</td>
<td>1 je 100 Stk</td>
<td>X*</td>
<td>DIN EN 1537 und Werkszeichnungen</td>
</tr>
<tr>
<td>Wanddicke (bei Wellrohr Wanddicke an Innen- und Außenrippe und der Flanke)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rohrdurchmesser innen und außen</td>
<td>Messung</td>
<td>1 je 100 Stk</td>
<td>X*</td>
<td>Mindestwerte gemäß Anlagen 1 bis 5</td>
</tr>
<tr>
<td>1.5 Lippendichtungen, Rollringe und Dichtscheiben</td>
<td>Messung</td>
<td>1 % je Lieferung, mindestens 5 Stk</td>
<td>X*</td>
<td>Werkszeichnungen</td>
</tr>
<tr>
<td>Durchmesser (bei Dichtscheiben innen und außen)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6 Stahlübergangsrohr</td>
<td>DIN EN 10204</td>
<td>jede Lieferung</td>
<td>X</td>
<td>Werksbescheinigung 2.1</td>
</tr>
<tr>
<td>Stahlsorte</td>
<td>Messung</td>
<td>1 je 100 Stk</td>
<td>X*</td>
<td>Werkszeichnungen</td>
</tr>
<tr>
<td>Außen- und Innendurchmesser</td>
<td>Messung</td>
<td>1 je 100 Stk</td>
<td>X*</td>
<td>Werkszeichnungen</td>
</tr>
<tr>
<td>Wanddicke</td>
<td>Messung</td>
<td>1 je 100 Stk</td>
<td>X*</td>
<td>Werkszeichnungen</td>
</tr>
<tr>
<td>1.7 Schruppschläuche</td>
<td>DIN EN 10204</td>
<td>jede Lieferung</td>
<td>X</td>
<td>Werksbescheinigung 2.1</td>
</tr>
<tr>
<td>Formmasse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8 Korrosionsschutzbeschichtungen, Materialien des Korrosionsschutzsystems</td>
<td>DIN EN 10204</td>
<td>5 % je Fertigungsanzahl</td>
<td>X</td>
<td>Abnahmeprüfzeugnis 3.1</td>
</tr>
<tr>
<td>Materialeigenschaften und Schichtdicke</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fortsetzung Anlage 6, Seite 2 von 2

1. Werkseigene Produktionskontrolle
2. Erstprüfung / Fremdüberwachung (2 x jährlich)

Anlage 6
Blatt 1 von 2
Fortsetzung von Anlage 6, Seite 1 von 2

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfmethode</th>
<th>WPK¹</th>
<th>EP/FÜ²</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Monolithen - Menge des eingebrachten Korrosionsschutzmittels</td>
<td>Wägung</td>
<td>arbeitstäglich; mindestens jeder 20. Anker</td>
<td>X</td>
<td>Mittelwert ≥ 42 g/m; Einzelwerte ≥ 25 g/m</td>
</tr>
<tr>
<td>Monolithen - Verteilung des Korrosionsschutzmittels</td>
<td>visuell</td>
<td>arbeitstäglich; mindestens jeder 20. Anker</td>
<td>X</td>
<td>in Zwickel eingedrungen, alle Oberflächen benetzt</td>
</tr>
<tr>
<td>2.2 Litzen in Lₐₘ - frei von Korrosionsschutzmittel</td>
<td>visuell</td>
<td>arbeitstäglich</td>
<td>X</td>
<td>ja</td>
</tr>
<tr>
<td>2.3 O-Ringe - Prüfung auf Funktionsübernahme</td>
<td>visuell, Probestück</td>
<td>5 % je Fertigungs-anzahl</td>
<td>X</td>
<td>ja</td>
</tr>
<tr>
<td>2.4 Stahlübergangsrohr mit Umlenkring und O-Ring - Prüfung auf Funktionsübernahme</td>
<td>visuell, Probestück</td>
<td>5 % je Fertigungs-anzahl</td>
<td>X</td>
<td>ja</td>
</tr>
<tr>
<td>2.5 Schruppföhläuche - Wanddicke im aufgeschrompfen Zustand</td>
<td>Probestück und Messung</td>
<td>1 je Ankertyp je Herstellung</td>
<td>X</td>
<td>≥ 1,5 mm</td>
</tr>
<tr>
<td>2.6 Einpressmörtel</td>
<td>DIN EN 445</td>
<td>DIN EN 445</td>
<td>X</td>
<td>DIN EN 447</td>
</tr>
</tbody>
</table>

* Prüfplan:
\[z = x - 1,64 \, s \]
gleich oder größer als der geforderte Mindestwert, so ist das Los anzunehmen, anderenfalls zurückzuweisen.